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Abstract: We provide new evidence for the gauge/string duality between the baryonic

branch of the cascading SU(k(M + 1)) × SU(kM) gauge theory and a family of type IIB

flux backgrounds based on warped products of the deformed conifold and R
3,1. We show

that a Euclidean D5-brane wrapping all six deformed conifold directions can be used to

measure the baryon expectation values, and present arguments based on κ-symmetry and

the equations of motion that identify the gauge bundles required to ensure worldvolume

supersymmetry of this object. Furthermore, we investigate its coupling to the pseudoscalar

and scalar modes associated with the phase and magnitude, respectively, of the baryon

expectation value. We find that these massless modes perturb the Dirac-Born-Infeld and

Chern-Simons terms of the D5-brane action in a way consistent with our identification

of the baryonic condensates. We match the scaling dimension of the baryon operators

computed from the D5-brane action with that found in the cascading gauge theory. We

also derive and numerically evaluate an expression that describes the variation of the baryon

expectation values along the supergravity dual of the baryonic branch.
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1. Introduction

Consideration of a stack of N D3-branes leads to the conjectured duality of N = 4 super

Yang-Mills theory to type IIB string theory on AdS5 × S5 [1 – 3]. A different, N = 1

supersymmetric example of the AdS/CFT correspondence follows from placing the stack

of D3-branes at the tip of the conifold [4, 5]. This suggests a duality between a certain

SU(N)× SU(N) superconformal gauge theory and type IIB string theory on AdS5 × T 1,1.

Addition of M D5-branes wrapped over the two-sphere near the tip of the conifold changes

the gauge group to SU(N +M)×SU(N) [6, 7]. This theory is non-conformal; it undergoes

a cascade of Seiberg dualities [8] SU(N + M)× SU(N) → SU(N −M)× SU(N) as it flows

from the UV to the IR [9, 10] (for reviews, see [11, 12]).
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The gauge theory contains two doublets of bifundamental, chiral superfields Ai, Bj

(with i, j = 1, 2). In the conformal case, M = 0, it has continuous global symmetries

SU(2)A × SU(2)B × U(1)R × U(1)B . The two SU(2) groups rotate the doublets Ai and

Bj , while one U(1) is an R-symmetry. The remaining U(1) factor corresponds to the

baryon number symmetry which we will be most interested in. As argued in [10, 13 – 15],

in the cascading theory where N is an integer multiple of M , N = kM , this symmetry is

spontaneously broken by condensates of baryonic operators. In this paper we will provide

a quantitative verification of this effect.

For N = kM the last step of the cascade is an SU(2M)× SU(M) theory which admits

two baryon operators (sometimes referred to as baryon and antibaryon)

A ∼ ǫα1α2...α2M
(A1)

α1

1 (A1)
α2

2 . . . (A1)
αM

M (A2)
αM+1

1 (A2)
αM+2

2 . . . (A1)
α2M

M ,

B ∼ ǫα1α2...α2M
(B1)

α1

1 (B1)
α2

2 . . . (B1)
αM

M (B2)
αM+1

1 (B2)
αM+2

2 . . . (B1)
α2M

M . (1.1)

Baryon operators of the general SU(M(k + 1))× SU(Mk) theory have the schematic form

(A1A2)
k(k+1)M/2 and (B1B2)

k(k+1)M/2, with appropriate contractions described in [13].

Unlike the “dibaryon” operators of the conformal SU(N) × SU(N) theory [6], A and B
are singlets under the two global SU(2) symmetries. These operators acquire expectation

values that spontaneously break the U(1)B baryon number symmetry; this is why the gauge

theory is said to be on the baryonic branch of its moduli space [16]. Supersymmetric vacua

on the one complex dimensional baryonic branch are subject to the constraint AB = −Λ4M
2M ,

and thus we can parameterize it as follows

A = iζΛ2M
2M , B =

i

ζ
Λ2M

2M . (1.2)

The non-singular supergravity dual of the theory with |ζ| = 1 is the warped deformed

conifold found in [10]. In [14] the linearized scalar and pseudoscalar perturbations, cor-

responding to small deviations of ζ from 1, were constructed. The full set of first-order

equations necessary to describe the entire moduli space of supergravity backgrounds dual

to the baryonic branch, sometimes called the resolved warped deformed conifolds, was

derived and solved numerically in [17] (for a further discussion of the solutions, see [15]).

The construction of this moduli space of supergravity backgrounds, which have just the

right symmetries to be identified with the baryonic branch in the cascading gauge theory,

provides an excellent check on the gauge/string duality in this intricate setting. Yet, one

question remains: how do we identify the baryonic expectation values on the string side of

this duality? Among other things, this is needed to construct a map between the parameter

U that labels the supergravity solutions, and the parameter |ζ| in the gauge theory.

The dual string theory description of the baryon operators (1.1) was first considered

by Aharony [13]. He argued that the heavy “particle” dual to such an operator is described

at large r by a D5-brane wrapped over the T 1,1, with some D3-branes dissolved in it (to

account for this, the world volume gauge field needs to be turned on). To calculate the

two-point function of baryon operators inserted at x1 and x2 we may use a semi-classical

approach to the AdS/CFT correspondence. Then we need a (Euclidean) D5-brane whose

world volume has two T 1,1 boundaries at large r, located at x1 and x2. In this paper we
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will be interested in a simpler embedding of the D5-brane: as suggested by Witten [18],

the object needed to calculate the baryonic expectation values is the Euclidean D5-brane

that has the appearance of a pointlike instanton from the four-dimensional point of view,

and wraps the remaining six (generalized Calabi-Yau) directions of the ten-dimensional

spacetime. This object has a single T 1,1 boundary at large r, corresponding to insertion

of just one baryon operator. As we will find, supersymmetry requires that the world

volume gauge field is also turned on, so there are D3-branes dissolved in the D5. This

identification will be corroborated by demonstrating that the D5-brane couples correctly to

the pseudoscalar zero-mode of the theory that changes the phase of the baryon expectation

value [14].

Close to the boundary, a field φ dual to an operator of dimension ∆ in the AdS/CFT

correspondence behaves as

φ(x, r) = φ0(x) r∆−4 + Aφ(x) r−∆ , (1.3)

Here Aφ is the operator expectation value [19], and φ0 is the source for it. In the cascading

theory, which is near-AdS in the UV, the same formulae hold modulo powers of ln r [20, 21].

The field corresponding to a baryon will be identified, at a semi-classical level, with e−SD5(r),

where SD5(r) is the action of a D5-brane wrapping the Calabi-Yau coordinates up to the

radial coordinate cut-off r. The different baryon operators A,A,B,B will be distinguished

by the two possible D5-brane orientations, and the two possible κ-symmetric choices for the

world volume gauge field that has to be turned on inside the D5-brane. In the cascading

gauge theory there is no source added for baryonic operators, hence we find that φ0 = 0. On

the other hand, the term scaling as r−∆ is indeed revealed by our calculation of e−SD5(r) as

a function of the radial cut-off, allowing us to find the dimensions of the baryon operators,

and the values of their condensates.

This paper is structured as follows. In the remainder of section 1 we review the

geometry of the deformed conifold, and the warped supergravity backgrounds dual to

the baryonic branch, including the corresponding Killing spinors. We also review the

κ-symmetry conditions for D-brane embeddings, and briefly discuss a number of brane

configurations that satisfy them. section 2 is devoted to the derivation of the first-order

equation for the gauge field. We first discuss a Lorentzian D7-brane wrapping the warped

deformed conifold directions, before presenting a parallel treatment for the more subtle

case of the Euclidean D5-brane wrapping the conifold. Section 3 is devoted to the physics

of the D5-instanton in the KS background. From the behavior of the D5-brane action as

a function of the radial cut-off we extract the dimension of the baryon operator, and show

that it matches the expectations from the dual cascading gauge theory. We also show that

the D5-brane couples to the baryonic branch complex modulus in the way consistent with

our identification of the condensates. In particular, we demonstrate that pseudoscalar

perturbations of the backgrounds shift the phase of the baryon expectation value. We

generalize to the complete baryonic branch in section 4 where we compute the baryon

expectation values as a function of the supergravity modulus U . The product of the

expectation values calculated from the D5-brane action is shown to be independent of U in

agreement with (1.2). Finally, we present an integral expression for their ratio and evaluate
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it numerically, which provides a relation between the baryonic branch modulus |ζ| in the

gauge theory and the modulus U in the dual supergravity description, and show that they

satisfy AB = const. We conclude briefly in section 5.

1.1 Review of warped deformed conifolds

We start our discussion with a review of the warped deformed conifold (KS) back-

ground [10], which is dual to a locus on the baryonic branch where |A| = |B|. Then

we review the generalization of the background to the entire baryonic branch found by

Butti et. al. [17].

The warped deformed conifold is a warped product of four-dimensional flat space and

an SU(2) × SU(2) Calabi-Yau three-fold M:

ds2 = h(t)−1/2dx2
3,1 + h(t)1/2ds2

M . (1.4)

The deformed conifold M is described in complex coordinates by the equation

4
∑

i=1

z2
i = ε2 . (1.5)

The warp factor is given by

h(t) = (gsMα′)222/3ε−8/3I(t) , (1.6)

I(t) ≡ 21/3

∫ ∞

t
dx

x coth(x) − 1

sinh2(x)
(sinh(x) cosh(x) − x)1/3 , (1.7)

In the asymptotic near-AdS region, the radial coordinate t is related to the standard

coordinate r by

r2 =
3

25/3
ε4/3e2 t/3 . (1.8)

Since M has a topology of S2×S3×R
+ it is convenient to introduce the following one-forms

ei on S2

e1 ≡ dθ1 , e2 ≡ − sin θ1dφ1 , (1.9)

and a set of invariant forms on S3

ǫ1 ≡ sin ψ sin θ2dφ2 + cos ψdθ2 , (1.10)

ǫ2 ≡ cos ψ sin θ2dφ2 − sinψdθ2 , (1.11)

ǫ3 ≡ dψ + cos θ2dφ2 . (1.12)

In term of these we define one-forms

g1 ≡ e2 − ǫ2√
2

, g2 ≡ e1 − ǫ1√
2

, (1.13)

g3 ≡ e2 + ǫ2√
2

, g4 ≡ e1 + ǫ1√
2

, (1.14)

g5 ≡ ǫ3 + cos θ1dφ1 , (1.15)
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which allow for a concise description of the Calabi-Yau metric on M:

ds2
M =

ε4/3K(t)

2

[

sinh2

(

t

2

)

(

g2
1 + g2

2

)

+ cosh2

(

t

2

)

(

g2
3 + g2

4

)

+
1

3K(t)3
(

dt2 + g2
5

)

]

,

(1.16)

where

K(t) ≡ (sinh(t) cosh(t) − t)1/3

sinh(t)
. (1.17)

The dilaton φ is constant, but there are non-trivial three- and five-form fluxes in this

background [10]. The NS-NS two-form is given by

B2 =
gsMα′

2

t coth(t) − 1

sinh(t)

[

sinh2

(

t

2

)

g1 ∧ g2 + cosh2

(

t

2

)

g3 ∧ g4

]

, (1.18)

and the R-R fluxes are most compactly written as

F3 =
Mα′

2

{

g3 ∧ g4 ∧ g5 + d

[

sinh(t) − t

2 sinh(t)
(g1 ∧ g3 + g2 ∧ g4)

]}

, (1.19)

F̃5 = dC4 + B2 ∧ F3 = (1 + ∗) (B2 ∧ F3) . (1.20)

Corresponding R-R potentials are easily found:

C2 =
Mα′

2

[

ψ

2
(g1 ∧ g2 + g3 ∧ g4) − 1

2
cos θ1 cos θ2 dφ1 ∧ dφ2

− t

2 sinh(t)
(g1 ∧ g3 + g2 ∧ g4)

]

, (1.21)

C4 =
1

gsh(t)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (1.22)

From here on we set the deformation parameter ε to unity for notational simplicity, and

also choose Mα′ = 2 and gs = 1.

The KS solution is invariant under the Z2 symmetry I, which exchanges (θ1, φ1) with

(θ2, φ2) accompanied by the action of −I of SL(2, Z). On the gauge theory side, this

symmetry exchanges the A and B baryons. Therefore, the KS solution corresponds to |ζ| =

1 in (1.2). There is a continuous family of solutions which generalize KS and break this I-

symmetry [14, 17]. This family is dual to the entire baryonic branch of the cascading gauge

theory, parameterized by ζ (only the modulus of ζ is manifest in these backgrounds). The

corresponding metric can be written in the form of the Papadopoulos-Tseytlin ansatz [22]

in the string frame:

ds2 = e2Adx2
3,1 + exds2

M = e2Adx2
3,1 +

6
∑

i=1

G2
i , (1.23)

where

G1 ≡ e(x+g)/2 e1 , G2 ≡ cosh(t) + a

sinh(t)
e(x+g)/2 e2 +

eg

sinh(t)
e(x−g)/2 (ǫ2 − ae2) ,

G3 ≡ e(x−g)/2 (ǫ1 − ae1) , G4 ≡ eg

sinh(t)
e(x+g)/2 e2 −

cosh(t) + a

sinh(t)
e(x−g)/2 (ǫ2 − ae2) ,

G5 ≡ ex/2 v−1/2dt , G6 ≡ ex/2 v−1/2g5 . (1.24)
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While in the KS case there was a single warp factor h(t), now we find several functions

A(t), x(t), g(t), a(t), v(t).

In terms of these one-forms the Calabi-Yau (3, 0) form is

Ω = (G1 + iG2) ∧ (G3 + iG4) ∧ (G5 + iG6) , (1.25)

and the fundamental (1, 1) form is

J =
i

2

[

(G1+iG2)∧(G1−iG2)+(G3+iG4)∧(G3−iG4)+(G5+iG6)∧(G5−iG6)

]

. (1.26)

The background also contains the fluxes

B2 = h1 (ǫ1 ∧ ǫ2 + e1 ∧ e2) + χ (e1 ∧ e2 − ǫ1 ∧ ǫ2) + h2 (ǫ1 ∧ e2 − ǫ2 ∧ e1) ,

F3 = −1

2
g5 ∧

[

ǫ1 ∧ ǫ2 + e1 ∧ e2 − b (ǫ1 ∧ e2 − ǫ2 ∧ e1)

]

− 1

2
dt ∧

[

b′ (ǫ1 ∧ e1 + ǫ2 ∧ e2)

]

,

F̃5 = F5 + ∗10F5 ,

F5 = −(h1 + bh2) e1 ∧ e2 ∧ ǫ1 ∧ ǫ2 ∧ ǫ3 , (1.27)

parameterized by functions h1(t), h2(t), b(t) and χ(t). In addition, the dilaton φ now also

depends on the radial coordinate t.

The functions a and v satisfy a system of coupled first order differential equations [17]

whose solutions are known in closed form only in the KS [10] and the Chamseddine-Volkov-

Maldacena-Nunez (CVMN) [23, 24] limits. All other functions A,x, g, h1, h2, b, χ, φ are

unambiguously determined by a and v through the relations

e−4A = U−2
(

e−2φ − 1
)

, e2x =
(bC − 1)2

4(aC − 1)2
e2g+2φ(1 − e2φ) , (1.28)

e2g = −1 − a2 + 2aC , h1 = −h2 C , (1.29)

h2 =
e2φ(bC − 1)

2S
, b =

t

S
, (1.30)

χ′ = a(b − C)(aC − 1)e2(φ−g) φ′ =
(C − b) (aC − 1)2

(bC − 1) S
e−2 g , (1.31)

where C ≡ − cosh(t), S ≡ − sinh(t), and we remind the reader that we set Mα′/2 =

ε = gs = 1, and require φ(∞) = 0. In writing these equations we have specialized to

the baryonic branch by imposing appropriate boundary conditions at infinity [15]; namely

η = 1 in the notation of [17]. Varying η produces a more general, two parameter family of

SU(3) structure backgrounds, that also include the CVMN solution [23, 24], which requires

η = 0 [17]. The baryonic branch (η = 1) family of supergravity solutions is labelled by

one real “resolution parameter” U [15]. While the leading asymptotics of all supergravity

backgrounds dual to the baryonic branch are given by the KT solution [9], terms subleading

at large t depend on U . This family of supergravity solutions preserves the SU(2)× SU(2)

symmetry, but for U 6= 0 breaks the Z2 symmetry I of the KS background.

On the baryonic branch we can consider a transformation that takes ζ into ζ−1, or

equivalently U into −U . This transformation leaves v invariant and changes a as follows

a → − a

1 + 2a cosh(t)
. (1.32)
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It is straightforward to check that ae−g is invariant while (1 + a cosh(t))e−g changes sign.

This transformation also exchanges eg + a2e−g with e−g and therefore it is equivalent to

the exchange of (θ1, φ1) and (θ2, φ2) involved in the I-symmetry.

1.2 D-Branes, κ-symmetry and killing spinors of the conifold

A Dirichlet p-brane (with p spatially extended dimensions) in string theory is described by

an action consisting of two terms [25 – 27]: the Dirac-Born-Infeld action, which is essentially

a minimal area action including non-linear electrodynamics, and the Chern-Simons action,

which describes the coupling to the R-R background fields:

S = SDBI + SCS = −
∫

W

dp+1σe−φ
√

− det(G + F) +

∫

W

eF ∧ C . (1.33)

Here W is the worldvolume of the brane and we have set the brane tension to unity.

Further, G is the induced metric on the worldvolume, F = F2 +B2 is the sum of the gauge

field strength F2 = dA1 and the pullback of the NS-NS two-form field, and C =
∑

i Ci is

the formal sum of the R-R potentials. In superstring theory all these fields should really

be understood as superfields, but we shall ignore fermionic excitations here.

Wick rotation of this action to Euclidian space such that all p + 1 directions become

spatially extended (which leads to a Euclidean worldvolume D-instanton) effectively mul-

tiplies the action by a factor of i. This cancels the minus sign under the square root in the

DBI term and leaves it real since the determinant is now positive. The CS term however

is purely imaginary now. Consequently the equations of motion that follow from the DBI

and CS terms now have be satisfied independently of each other if we insist on the gauge

field being real.

The action (1.33) is invariant on shell under the so-called κ-symmetry [28 – 30]. This

allows us to find first-order equations for supersymmetric configurations which are easier

to solve than the second order equations of motion. The κ-symmetry condition can be

written as

Γκǫ = ǫ , (1.34)

where ǫ is a doublet of Majorana-Weyl spinors, and the operator Γκ is specified below. Sat-

isfying this equation guarantees worldvolume supersymmetry in the probe brane approxi-

mation, and every solution for which ǫ is a Killing spinor corresponds to a supersymmetry

compatible with those preserved by the background.

The decomposition of a Weyl spinor ǫ into a doublet of Majorana-Weyl spinors

ǫ =

(

ǫ1

ǫ2

)

(1.35)

is achieved by projecting onto the eigenstates of charge conjugation1 ǫ1 = (ǫ + ǫ∗)/2 and

ǫ2 = (ǫ − ǫ∗)/2i.

1Given any spinor ǫ we denote its charge conjugate by ǫ∗, which of course is represented by complex

conjugation and left multiplication by a charge conjugation matrix B. We do not write B explicitly here,

though its presence is understood.

– 7 –
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In IIB superstring theory on a (9, 1) signature spacetime, the κ-symmetry operator Γκ

for a Lorentzian D-brane extended along the time direction x0 and p spatial directions is

given by

Γκ =

√
− detG

√

− det(G + F)

∞
∑

n=0

(−1)n /FnΓ(p+1) ⊗ (σ3)
n+ p−3

2 iσ2 , (1.36)

Γ(p+1) ≡ 1

(p + 1)!
√
− detG

ǫµ1...µp+1Γµ1...µp+1
, (1.37)

/Fn ≡ 1

2nn!
Γν1...ν2n

Fσ1σ2
. . .Fσ2n−1σ2n

Gν1σ1 . . . Gν2nσ2n . (1.38)

Here σi are the usual Pauli matrices. We use Greek labels for the worldvolume indices of

the D-brane and consequentially the Γµ are induced Dirac matrices. In what follows we

denote the Minkowski spacetime coordinates by x0 . . . x3 and label the tangent space of the

internal manifold M by 1, 2 . . . 6 in reference to the basis one-forms (1.24). The expression

for Γκ can be significantly simplified for an embedding covering all six directions of the

deformed conifold, in which case we simply align the worldvolume tangent space with that

of M.

The Killing spinor Ψ of the supergravity backgrounds dual to the baryonic branch

is built out of a six-dimensional pure spinor η− and an arbitrary spinor ζ− of negative

four-dimensional chirality,

Ψ = α ζ− ⊗ η− + iβ ζ+ ⊗ η+ , (1.39)

(Γ1 − iΓ2)ζ
− ⊗ η− = (Γ3 − iΓ4)ζ

− ⊗ η−

= (Γ5 − iΓ6)ζ
− ⊗ η−

= 0 , (1.40)

where η+ = (η−)∗ and ζ+ = (ζ−)∗. The functions α and β are real [17, 15] and given by

α =
eφ/4(1 + eφ)3/8

(1 − eφ)1/8
, β =

eφ/4(1 − eφ)3/8

(1 + eφ)1/8
. (1.41)

(this expression for β is for U > 0; β changes sign when U does). The corresponding

Majorana-Weyl spinors Ψ1 and Ψ2 are

Ψ1 =
1

2

(

(α − iβ)ζ− ⊗ η− + (α + iβ)ζ+ ⊗ η+
)

, (1.42)

Ψ2 =
1

2i

(

(α + iβ)ζ− ⊗ η− − (α − iβ)ζ+ ⊗ η+
)

. (1.43)

1.3 Branes wrapping the angular directions

In the context of the conifold, the closest analogue to the baryon vertex in AdS5 × S5

that was discussed in [31 – 33], would be a D5-brane wrapping the five angular directions

of the internal space, with worldvolume coordinates σµ = (x0, θ1, φ1, θ2, φ2, ψ). The brane

describing the baryon vertex in AdS5×S5 has “BI-on” spikes corresponding to fundamental

strings attached to the brane and ending on the boundary of AdS, indicating that it is not a

– 8 –
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gauge-invariant object. Here however, we are interested in gauge-invariant, supersymmetric

objects, that are candidate duals to chiral operators in the gauge theory, so we might try

to consider a smooth embedding at constant radial coordinate (the difference between a

“baryon” and a “baryon vertex” was already stressed in [31]).

To avoid having the BI-on spikes, it was proposed [13] that we should use an appro-

priate combination of D5-branes wrapping all the angular coordinates, and of D3-branes

wrapping the S3. This is equivalent to turning on a particular gauge field on the wrapped

D5-brane. Unfortunately, it is not clear how to maintain the supersymmetry of such an

object. It is not hard to see, for example from the appropriate κ-symmetry equations, that

a (Lorentzian) D5-brane wrapping the five angular direction of the conifold and embedded

at constant r cannot be a supersymmetric object. The κ-symmetry equation seems to call

for an additional constraint of the form Γx0ψǫ∗ = −iǫ on the Killing spinors, which would

imply also Γx0rǫ
∗ = −ǫ, i.e. precisely what we would expect for strings stretched in the

radial direction. However, such a projection does not commute with the other conditions

that the Killing spinors have to satisfy and thus is not consistent. This was pointed out

in [34] for the case of the singular conifold [4], and the argument carries over to the de-

formed conifold. Even with a worldvolume gauge field such a D5-brane cannot be a BPS

object.

The same conclusion also follows from the equation of motion for the radial component

of the embedding XM (ζµ). The leading term (as r → ∞) in the D-brane Lagrangian arises

from the B2-field contribution to the DBI term and is proportional to r (ln r)2, so this

brane is bound to contract and move to smaller r, until eventually it reaches the tip of the

conifold, where the two-cycle collapses and the brane unwraps.

On the other hand, as suggested by Aharony [13], the D5-branes with D3-branes

dissolved within them are the “particles” dual to the baryon operators. As suggested

by Witten [18], to find the baryonic condensates we need to consider a Euclidean D5-

brane wrapping the deformed conifold directions, with a certain gauge field turned on.

While there are no non-trivial two-cycles in this case, the worldvolume gauge field does

modify the coupling of this D-instanton to the R-R potential C4. We will show that such a

configuration can be made κ-symmetric and then yields the baryonic condensates consistent

with the gauge theory expectations.

As a first example of a supersymmetric brane wrapping all the angular directions,

we shall discuss a D7-brane wrapping the warped deformed conifold, with the remaining

one space and one time directions extended in R
3,1. The supersymmetry conditions for

general D-branes in N = 1 backgrounds were derived in [35 – 37], and our results will be

consistent with theirs. We will show that the Lorentzian D7-brane configuration on the

KS background is supersymmetric in the absence of a worldvolume gauge-field, though the

κ-symmetry analysis will also reveal supersymmetric configurations with non-zero gauge

field. The fact that switching on this field is not required for supersymmetry might have

been guessed from a naive counting argument. This embedding of the D7-brane should be

mutually supersymmetric with the D3-branes filling the R
3,1, since the number of Neumann-

Dirichlet directions for strings stretched between them equals eight.

The object we are most interested in is the Euclidean D5-brane completely wrapped
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on the conifold. In contrast to the case of the D7-brane, we will find that supersymmetry

requires a non-trivial gauge field on the worldvolume. Again this is consistent with the

naive count of Neumann-Dirichlet directions with the D3-branes, which gives ten in this

case and thus indicates that these branes cannot be mutually supersymmetric if F2 = 0.

2. Derivation of the first-order equation for the worldvolume gauge bundle

In this section we derive the first-order equation of motion that the U(1) gauge field has to

satisfy to obtain a supersymmetric configuration. Because the κ-symmetry of the Euclidean

D5-brane is subtle, we will first discuss the closely related case of a Lorentzian D7-brane

wrapping the six-dimensional deformed conifold, with non-zero gauge bundle only in these

directions. This object is extended as a string in the R
3,1 but in the case of a non-compact

space dual to the cascading gauge theory the tension of such a string diverges with the

cut-off as e2t/3. Therefore, this string is not part of the gauge theory spectrum.

2.1 κ-symmetry of the lorentzian D7-brane

The explicit form of the κ-symmetry equation for the D7 brane with non-trivial U(1) bundle

on the six-dimensional internal space is given by
(

ǫ1

ǫ2

)

= Γκ

(

ǫ1

ǫ2

)

∼
[

−( /F + /F3)σ3 + (1 + /F2)
]

iσ2 Γx0x1123456

(

ǫ1

ǫ2

)

, (2.1)

For the case of Euclidean D-branes wrapping certain cycles in Calabi-Yau manifolds, it was

shown in [35] that the κ-symmetry condition (2.1) can be rewritten in more geometrical

terms. This results in the conditions that F2,0 = 0, and that

1

2!
J ∧ J ∧ F − 1

3!
F ∧ F ∧ F = g

(

1

3!
J ∧ J ∧ J − 1

2!
J ∧ F ∧ F

)

. (2.2)

The constant g was found [35] to encode some information about the geometry, namely a

relative phase between coefficients of the covariantly constant spinors in the expansion of

the ǫi [35]. As we shall see below, the same equation holds in our case of a generalized

Calabi-Yau with fluxes, except that g becomes coordinate dependent.

With the SU(2) × SU(2) invariant ansatz for the gauge potential

A1 = ξ(t)g5 , (2.3)

we find that the gauge-invariant two-form field strength is given by

F =
ie−x

2 sinh(t)
× (2.4)

[

e−g
[

ξ̃(cosh(t) + 2a + a2 cosh(t)) + h2 sinh2(t)(1 − a2)
]

(G1 + iG2) ∧ (G1 − iG2)

+ eg
[

ξ̃ cosh(t) − h2 sinh2(t)
]

(G3 + iG4) ∧ (G3 − iG4)

+ ξ′v sinh(t)(G5 + iG6) ∧ (G5 − iG6) +
[

ξ̃(1 + a cosh(t)) − h2a sinh2(t)
]

(

(G1 + iG2) ∧ (G3 − iG4) + (G3 + iG4) ∧ (G1 − iG2)

)]

,
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where ξ̃ = ξ + χ. This explicitly shows that F is a (1, 1) form, which is one of the κ-

symmetry conditions [35 – 37]. Now it is convenient to define

a(ξ, t) ≡ e−2x[e2x + h2
2 sinh2(t) − (ξ + χ)2] ,

b(ξ, t) ≡ 2e−x−g sinh(t)[a(ξ + χ) − h2(1 + a cosh(t))] . (2.5)

In terms of these expressions we find that

1

3!
J ∧ J ∧ J − 1

2!
J ∧ F ∧ F = (a + ve−xb ξ′) vol6 ,

1

2!
J ∧ J ∧ F − 1

3!
F ∧ F ∧ F = (−b + ve−xa ξ′) vol6 , (2.6)

where vol6 = (J ∧ J ∧ J)/3!. Thus (2.2) would lead to a differential equation of the form

ξ′ =
ex(ga + b)

v(a − gb)
, (2.7)

for some as yet undetermined g. In order to confirm the validity of this equation and de-

termine the function g we return to the full κ-symmetry equation (2.1) with the Majorana-

Weyl spinors ǫ1 = (Ψ + Ψ∗)/2 and ǫ2 = (Ψ − Ψ∗)/2i constructed from the Killing spinor.

The analysis of this equation is much simplified by noting that Γ1...6η
± = ∓iη± and that

the spinors η± are in fact eigenspinors2 of /Fn

/Fη± = ±iη± (F12 + F34 + F56) , (2.8)

/F2η± = −η± (F12F34 + F14F23 + F12F56 + F34F56) , (2.9)

/F3η± = ∓iη± (F12F34F56 + F14F23F56) , (2.10)

where the indices refer the basis one-forms (1.24). Then it follows from (2.6) that the two

terms in the κ-symmetry equation act on the spinors in a rather simple fashion:

[

1 + /F2
]

η± =
[

a + ve−xbξ′
]

η± ,
[

/F + /F3
]

η± = ±i
[

−b + ve−xaξ′
]

η± . (2.11)

Using these relations it is easy to see that the Killing spinor (1.39) indeed solves (2.1)

provided we impose the conditions that its four-dimensional parts ζ± obey the condition

Γx0x1ζ± ⊗ η± = ζ± ⊗ η±, and that the gauge field ξ(t) satisfies (2.7) with

g(t) = g7(t) ≡ − 2αβ

α2 − β2
= −e−φ

√

1 − e2φ . (2.12)

Thus indeed (2.2) holds and (2.7) is the correct first order differential equation given this

function g(t).

The fact that the κ-symmetry condition (2.1) is satisfied implies worldvolume super-

symmetry in the probe brane approximation. However, we also ask for the worldvolume

supersymmetries to be compatible with those of the background. In order to check how

2For simplicity we drop the four-dimensional spinors ζ± in ζ±
⊗ η±.
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many supersymmetries of the background are preserved by the brane we need to enumerate

the solutions of (2.1) for which ǫ1 + iǫ2 is not just any spinor, but a Killing spinor. For

the particular case of the D7-brane with U(1) gauge bundle determined by the first-order

equation (2.7) we saw that Killing spinors of the form (1.39) solve the κ-symmetry equation

if Γx0x1ζ± ⊗ η± = ζ± ⊗ η±, and thus half of the supersymmetries of the background are

preserved.

2.2 An equivalent derivation starting from the equation of motion

Here we present an alternative derivation of the first-order equations for the gauge field ξ(t),

starting from the second-order equation of motion. This method has the advantage that it

applies equally well to Lorentzian D7 and Euclidean D5-branes wrapping the conifold. The

κ-symmetry argument we employed in the previous section for the D7-brane is somewhat

complicated in the case of the D5-instanton by the fact that we are forced to Wick rotate

to Euclidean spacetime signature where there are no Majorana-Weyl spinors. However,

knowing that a first-order differential equation for the gauge field exists, as well as its

general features, it is not hard to derive it directly from the second-order equation of

motion.

Since with Euclidean signature the DBI action is real and the CS action pure imaginary,

two sets of equations of motion have to be satisfied simultaneously if we insist on the gauge

field being real. With the ansatz (2.3) for the gauge potential, the CS equations are

automatically satisfied, as are five of the DBI equations; only the one for the g5 component

of the gauge field (or equivalently its ψ component) is non-trivial.

In terms of the (implicitly U -dependent) functions defined in [17] the determinant that

appears in the DBI action is given by

detM(G + F) = v−2e6x(1 + (ξ′)2v2e−2x)

[

1 + e−4x
(

(ξ + χ)2 − sinh2(t)h2
2

)2

−2e−2x
(

(ξ + χ)2 + sinh2(t)h2
2

) (

1 − 2e−2ga2 sinh2(t)
)

−8e−2x−2g sinh2(t)ah2(ξ + χ)(1 + a cosh(t))

]

, (2.13)

where we have omitted the angular dependence ∼ sin2 θ1 sin2 θ2. Here we have only taken

into account the six-dimensional internal manifold M. If the brane is also extended in the

Minkowski directions (but carries zero gauge bundle in these directions) there are additional

ξ-independent factors multiplying the DBI determinant that appears in the action (1.33).

E.g. for the Lorentzian D7-brane this factor is equal to e4A. Using the definitions (2.5),

the term in square brackets in (2.13) can be written as a sum of squares a2 + b2.

We know from the form of the κ-symmetry equation that the first-order differential

equation we are looking for must

(i) be polynomial (of at most third order) in ξ and its first derivative,

(ii) contain ξ′ only at linear order (i.e. no (ξ′)2 terms),

(iii) be such that the determinant factorizes.
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In particular the last condition means that when we eliminate ξ′ from the action, the

ξ-dependent term must be a perfect square, else the factor of
√

detM(G + F) in the de-

nominator of (1.36) cannot be cancelled by the numerator to give unit eigenvalue. This

implies that we must have

(1 + (ξ′)2v2e−2x) =
a2 + b2

f2(ξ, t)
, (2.14)

for some f(ξ, t), so that

ξ′ =
ex

√

a2 + b2 − f2(ξ, t)

v f(ξ, t)
. (2.15)

Because we expect the equation to be polynomial in ξ one must be able to explicitly take

the square root, and thus f(ξ, t) can be written as

f(ξ, t) =
a − g(t)b

√

1 + g2(t)
, (2.16)

for some function g(t), where all the ξ dependence is now implicit in a and b . With this

ansatz we have

ξ′ =
ex(ga + b)

v(a − gb)
, (2.17)

which is of the same form as the first order differential equation we derived for the D7-brane

in the previous section. The function g follows by varying the action with respect to ξ and

substituting for ξ′ using (2.17). It is not difficult to check that the equations of motion that

follow from the DBI action of the D7-brane
∫

e2A−φ
√

detM(G + F) are indeed implied by

the first order equation (2.17) with

g = g7 =
ex−g(1 + a cosh(t))

h2 sinh(t)
= −e−φ

√

1 − e2φ , (2.18)

as we found above using a κ-symmetry argument.

Using the same method, we can now find the first-order equation for the gauge field

on the Euclidean D5-brane. Having constrained the equation we are looking for to the

form (2.17) we vary the DBI action
∫

e−φ
√

detM(G + F) using (2.13) and eliminate ξ′ to

obtain

δ

δξ

[

e−φ
√

det(G + F + B)
]

= 0

=
2e−φe2x

√

1 + g2

v(a − gb)

[

−(ξ + χ)e−xa + e−ga sinh(t)b
]

− d

dt

[

e−φe2x(ga + b)
√

1 + g2

]

.

Collecting powers of ξ and equating their coefficients to zero we find differential equations

for g(t) which are solved simultaneously by

g = g5 ≡ −e−x+gh2 sinh(t)

(1 + a cosh(t))
=

eφ

√
1 − e2φ

. (2.19)
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Substituting this into (2.17) the first-order equation we were looking for, written out in

full, is

ξ′ =

[

− h2 sinh(t)e2g [e2x + h2
2 sinh2(t) − (ξ + χ)2]

+2e2x sinh(t)(1 + a cosh(t))[a(ξ + χ) − h2(1 + a cosh(t))]

]

×
[

veg

[

(1 + a cosh(t))[e2x + h2
2 sinh2(t) − (ξ + χ)2]

+2h2 sinh2(t)[a(ξ + χ) − h2(1 + a cosh(t))]

]]−1

. (2.20)

In spite of its complicated appearance, this equation can be integrated and can in fact be

solved fairly explicitly. In the KS limit it reduces to a simpler equation (3.2) that will be

discussed in section 3.

Let us note here the interesting fact that the Euclidean D5-brane and the Lorentzian

D7-brane are related by g5 = −1/g7. For the D7-brane we find g7 = 0 for the KS back-

ground (since there 1 + a cosh(t) = 0), while g7 diverges far along the baryonic branch

where h2 → 0, and correspondingly for g5 the situation is the other way around3.

The first order equation for the gauge bundle we have derived is in fact more general

than we have made explicit, and when written in the form (2.20) applies to the whole two-

parameter (η, U) family of SU(3) structure backgrounds discussed in [17]. The baryonic

branch in particular corresponds to the choice of boundary condition η = 1 at t = ∞ in the

notation of [17], but the above family of solutions also includes the CVMN background [23,

24], which has the linear dilation boundary condition η = 0 at infinity. We discuss some

details of the Euclidean D5-instanton on the CVMN background in appendix A.

2.3 κ-symmetry of the euclidean D5-brane

Let us now reconsider the Euclidean D5-brane using the κ-symmetry approach. The κ-

symmetry projection operator in [28, 30] was derived using the superspace formalism for

Lorentzian worldvolume branes in (9,1) signature spacetimes, and thus it is not immediately

clear if it is applicable to the case of a Euclidean worldvolume instanton which necessarily

has to reside in a (10,0) signature spacetime. For now we shall nevertheless proceed by per-

forming just a naive Wick-rotation of the κ-symmetry projector, which simply introduces

a factor −i in (1.36) such that Γ2
κ = 1 still holds.

The analog of the κ-symmetry condition (2.1) for the Euclidean D5-brane is then given

by
(

ǫ1

ǫ2

)

= Γκ

(

ǫ1

ǫ2

)

∼
[

−( /F + /F3) + (1 + /F2)σ3

]

σ2 Γ123456

(

ǫ1

ǫ2

)

. (2.21)

Re-expressing this in geometrical terms leads to an equation of the same form as (2.2), but

now we expect g(t) to be equal to g5(t). Using the same ansatz A1 = ξ(t)g5 as above it is

3As a curious aside note that taking g = 0 in (2.17) leads to an equation consistent with the action
R

e2A−2φ
p

detM(G + F). This coincides with the D7 brane case for the KS solution (since here φ = 0),

but in general it is not clear what (if anything) this corresponds to.
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clear that equations (2.6) and thus (2.7) still hold, and of course F is still a (1,1) form. Let

us mention in passing that Euclidean D5-branes with gauge bundles satisfying F2,0 = 0

also play an important role in topological string theory (see e.g. [38]).

However, with the gauge bundle we derived in the previous subsection (i.e. with g =

g5 = (α2 − β2)/(2αβ)) the κ-symmetry equation (2.21) does not have solutions for ǫ1 +

iǫ2 being equal to the Killing spinor (1.39). We can find solutions for other spinors by

expanding the ǫi in terms of pure spinors:

ǫi = xi(t) ζ− ⊗ η− + yi(t) ζ+ ⊗ η+ , (2.22)

where i = 1, 2. We find that with this ansatz (2.21) is solved if the coefficients satisfy

x1

x2
= i

(α − iβ)2

α2 + β2
,

y1

y2
= i

(α + iβ)2

α2 + β2
. (2.23)

Thus we have obtained a family of spinors (2.23) that solves the κ-symmetry equation with

the correct gauge bundle, but this family does not seem to contain the Killing spinor (which

differs by a sign in y1/y2). This would imply that even though for the gauge field configura-

tion we have found there is worldvolume supersymmetry in the probe brane approximation,

these supersymmetries would not be compatible with those of the background.

We believe that this difficulty is just an artefact of applying the κ-symmetry operator

in a Euclidean spacetime to a Euclidean worldvolume brane without properly taking into

account the subtleties of Wick-rotating the spinors and the projector itself, and that the

D5-instanton does preserve the background supersymmetries. In fact it is known that for

a Euclidean D5-brane wrapping six internal dimensions the correct κ-symmetry equations

are not the ones obtained by the naive Wick rotation we performed above, but instead

are identical to those for a Lorentzian D9-brane4. The κ-symmetry conditions for the

Lorentzian D9-brane lead to equations identical to (2.23) except for a change of sign on

the right hand side of the equation for y1/y2, so that they are now satisfied by the Killing

spinor. This shows that the worldvolume gauge field found above is consistent with properly

defined κ-symmetry.

In either case we consider the independent derivation of the first-order equation (2.20)

in the previous subsection a compelling argument that this gauge bundle is in fact the

correct one for our purposes, which will be corroborated below by the successful extraction

of the baryon operator dimension from its large t behaviour.

3. Euclidean D5-brane on the KS background

We will now specialize the discussion of the previous section to the case of a Euclidean

D5-brane wrapping the deformed conifold in the KS background. Since this background is

known analytically, the formulae are more explicit in this case. We interpret the Euclidean

D5-brane (which has the appearance of a pointlike instanton in Minkowski space) as the

dual of the baryon in the field theory, in the sense that its action captures information

about the (scale-dependent) anomalous dimension of the baryon operator, as well as its

expectation value.

4We would like to thank L. Martucci for pointing this out to us.

– 15 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
4

3.1 The gauge field and the integrated form of the action

For the KS background, with a = −1/ cosh(t) and χ = 0, the first-order differential equa-

tion (2.20) simplifies to

ξ′ =
e2x + h2

2 sinh2(t) − ξ2

2vξ
, (3.1)

or more explicitly, substituting in the KS expressions for x, h2 and v:

3
sinh(t) cosh(t) − t

sinh2(t)
ξ′ξ + ξ2 =

(sinh(t) cosh(t) − t)2/3h

16
+

1

4
(t coth(t) − 1)2 . (3.2)

Note that there is no ξ′ξ2 term. For this reason we can multiply the equation by an

integrating factor to turn the left hand side into the total derivative [(sinh(t) cosh(t) −
t)1/3ξ2]′ and reduce the equation to the integral

ξ2 = (sinh(t) cosh(t) − t)−1/3J(t) , (3.3)

where

J(t) =

∫ t

0

(

sinh2(x)h(x)

24
+

sinh2(x)(x coth(x) − 1)2

6 (sinh(x) cosh(x) − x)2/3

)

dx . (3.4)

We have set the integration constant to zero by requiring regularity at t = 0. The integral

looks “almost” like the explicitly computable one

∫ t

0

(

sinh2(x)h(x)

24
+

sinh2(x)(x coth(x) − 1)2

18 (sinh(x) cosh(x) − x)2/3

)

dx

=
1

48
(sinh(t) cosh(t) − t)h(t) +

1

12
(t coth(t) − 1)2(sinh(t) cosh(t) − t)1/3 , (3.5)

but a relative factor of 3 in the second term of (3.4) prevents us from performing it in

closed form.

Now consider the DBI action of the Euclidean D5-brane with this worldvolume gauge

field. Neglecting the five angular integrals for the time being, and focussing on the radial

integral, we see that the Lagrangian is in fact a total derivative, and thus the action is

given by

SDBI ∼
∫

dt e−φ
√

detG + F

= − 1

3(sinh(t) cosh(t) − t)1/2
J3/2 (3.6)

+

[

(sinh(t) cosh(t) − t)1/2h

16
+

(t coth(t) − 1)2

4(sinh(t) cosh(t) − t)1/6

]

J1/2 .

We are particularly interested in the UV behaviour of these quantities. From (3.3) it

is easy to find the asymptotic expansion of the gauge field as t → ∞:

ξ2 → 1

4
t2 − 7

8
t +

47

32
+ O(e−2t/3) . (3.7)
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Note that to leading order this approximates h2
2 sinh2(t), so for large t the coefficients of

the F2 and B2 fields become equal and cancellations occur in the action. This is essential

for obtaining the t3 behaviour of the action for large cut-off t, which as we will see gives

the correct t2 scaling of the baryon operator dimensions.

To extract the asymptotic behaviour of the action we will use the integrated form (3.6).

The leading terms in the expansion are easily found analytically, with the result

SDBI =

∫

dte−φ
√

det(G + F) → 1

6
(t2 + t − 2)

(

1

4
t2 − 7

8
t +

47

32

)1/2

+ O(e−2t/3)

→ 1

12
t3 − 1

16
t2 − 25

128
t +

943

1536
+ O(1/t) . (3.8)

Below we will argue that the O(1) term in this expansion determines the expectation value

of the baryon operator. Of particular interest is the variation of this expectation value

along the baryonic branch; we will investigate it in the next section. First, however, we

will give a field theoretic interpretation to the terms that increase with t. As we will see,

the coefficients of these divergent terms are universal for all backgrounds along the baryonic

branch.

3.2 Scaling dimension of baryon operator

We have seen that for large cut-off r (i.e. large t), the DBI action of the Euclidean D5-brane

will behave as S(r) ∼ (ln(r))3. Since this object corresponds to the baryon in the field

theory, we expect that exp(−S) is related to r−∆, where ∆ is the scaling dimension of the

baryon operator.

To make this statement more precise we consider the RG flow equation relating the

operator dimension ∆ to the boundary behavior of the dual field φ(r):

−r
dφ(r)

dr
= ∆(r)φ(r) . (3.9)

This equation obviously holds in the usual AdS/CFT case where all operator dimensions

have a limit as the UV cut-off is removed. The case of cascading theories is more subtle,

since there exist operators, such as the baryons, whose dimensions grow in the UV. As

we will see, in these cases (3.9) is still applicable. Identifying the field dual to a baryon

operator as

φ(r) ∼ exp(−S(r)) , (3.10)

we find

∆(r) = r
dS(r)

dr
=

dS(r)

d ln(r)
. (3.11)

To calculate the scaling dimension of the baryon in the gauge theory, we simply count

the number of constituent fields required to build a baryon operator for a given gauge

group SU(kM) × SU((k + 1)M) and multiply by the dimension of the chiral superfield A

or B; the latter approaches 3/4 in the UV where the theory is quasi-conformal. This gives

∆(r) =
3

4
Mk(k + 1) =

27g2
sM3

16π2
(ln(r))2 + O(ln(r)) , (3.12)
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where k labels the cascade steps and we have used the asymptotic expression for the radius

(energy scale) at which the kth Seiberg duality is performed:

rk = r0 exp

(

2πk

3gsM

)

. (3.13)

Here and in the remainder of this subsection we keep factors of gs,M, ε and α′ explicit.

Let us now compare this to the scaling dimension we obtain from the action of the

D5-instanton according to eq. (3.11). The leading term in the action is t3/12, which is

multiplied by a factor (gsMα′/2)3 that we had previously set to one, a factor 64π3 from the

previously neglected five angular integrals and a factor of τ5 = (2π)−5α′−3g−1
s . Therefore,

using (1.8) we have

S =
t3

12

(

gsMα′

2

)3 64π3

(2π)5α′3gs
+ O(t2) =

9g2
sM

3

16π2
(ln(r))3 + O((ln(r))2) . (3.14)

From (3.11) we find that this string theoretic calculation gives

∆(r) =
27g2

sM3

16π2
(ln(r))2 + O(ln(r)) . (3.15)

The term of leading order in ln(r) is in perfect agreement with the gauge theory re-

sult (3.12). We consider this a strong argument that the relation (3.10) between the

Euclidean D5-brane action and the field dual to the baryon is indeed correct. It would be

nice to also compare the terms of order ln(r) in the operator dimension, but we postpone

this more detailed study to future work.

3.3 Chern-Simons action — Coupling to pseudoscalar mode and the phase of

the baryonic condensate

Let us now turn to a discussion of the Chern-Simons terms in the D-brane action. Given

our conventions (1.20) for the gauge-invariant and self-dual five-form field strength F̃5,

there is a slight subtlety in the CS term of the action (1.33). Its standard form, given

above, is valid with the choice of conventions where F̃5 = F5 + H3 ∧C2 = dC4 + dB2 ∧C2.

In these conventions dC4 is invariant under B2 gauge transformations B2 → B2 + dλ1, but

transforms under C2 gauge transformations C2 → C2 + dΛ1 such as to leave F̃5 invariant.

However, we work in different conventions where F̃5 = dC4 + B2 ∧ F3; here dC4 changes

under B2 gauge transformations. This choice also alters the form of the CS term in the

action. The new R-R fields are obtained by C4 → C4+B2 ∧ C2 combined with C2 → −C2

everywhere else, which modifies some of the terms in the CS action that will be relevant

for us:

1

2

∫

C2 ∧F ∧F +

∫

C4 ∧F → −1

2

∫

C2 ∧ F ∧ F +
1

2

∫

C2 ∧B ∧B +

∫

C4 ∧F . (3.16)

For the KS background the CS action simply vanishes. However, it is interesting to

consider small perturbations around it. The pseudoscalar glueball discovered in [14] is the

Goldstone boson of the broken U(1) baryon number symmetry; it is associated with the
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phase of the baryon expectation value. This massless mode is a deformation of the R-R

fields (which is generated for example by a D1-string extended in R
3,1) given by

δF3 = ∗4da + f2(t) da ∧ dg5 + f ′
2(t) da ∧ dt ∧ g5 ,

δF̃5 = (1 + ∗)δF3 ∧ B2 =

(

∗4da − h(t)

6K2(t)
da ∧ dt ∧ g5

)

∧ B2 , (3.17)

where a(x0, x1, x2, x3) is a pseudoscalar field in four dimensions that satisfies d∗4da = 0 and

would experience monodromy around a D-string. This deformation solves the supergravity

equations with

f2(t) =
1

6K2(t) sinh2 t

∫ t

0
dxh(x) sinh2(x) . (3.18)

If we wish to identify the exponential exp(−S) = exp(−SDBI − SCS) of the brane action

(or more precisely the constant term in its asymptotic expansion as t → ∞) with the

baryon expectation value, then the pseudoscalar massless mode has to shift the phase of

this quantity, contained in the imaginary Chern-Simons term. The DBI action is obviously

unaffected by this deformation of the background since the NS-NS fields are unchanged.

This is consistent with the magnitudes of the baryon expectation values being unaffected

by the pseudoscalar mode; these magnitudes depend only on the scalar modulus U in

supergravity, corresponding to |ζ| in the gauge theory.

The phase exp(−SCS) by itself is not gauge invariant and thus not physical. Be-

cause our brane configuration has a boundary at t = ∞, only the difference in phase

exp(−∆SCS) = exp(−i∆φ) between two Euclidean D5-branes displaced slightly in one

of the transverse directions (i.e. between two instantons at different points in Minkowski

space) is gauge-invariant. Taking into account the anomalous Bianchi identities for F5 and

F7 and the R-R gauge transformations we see that this gauge-invariant phase difference is

given by

∆φ = ∆φB + ∆φF , (3.19)

where

∆φB =

∫
[

1

2
δF3 ∧ B ∧ B + δF5 ∧ B + ∗10δF3

]

, (3.20)

∆φF =

∫
[

−1

2
δF3 ∧ F ∧ F + δF5 ∧ F

]

. (3.21)

The integrals are taken over the six internal dimensions as well as a line in Minkowski

space. Note that here F5 = dC4 = F̃5 − B2 ∧ F3. For small perturbations around KS the

contribution ∆φF from the coupling to the gauge field vanishes (the first term in (3.21)

is a total derivative with vanishing boundary terms, while the second term doesn’t have

the right angular structure to give a non-zero result). Substituting the explicit form of the

R-R deformations from (3.17) we find that the phase difference is

∆φB = −1

2

∫
(

h

6K2
+ f ′

2

)

(t coth(t) − 1)2 da ∧ dt ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 . (3.22)
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We can interpret ∆φ as ∆a times a baryon number. It is satisfying to see that the pseu-

doscalar Goldstone mode indeed shifts the phase of the baryon expectation value and not

its magnitude. A more stringent test of our interpretation, which we leave for future work,

would be to carry out this computation for the whole baryonic branch and check whether

the numerical value of the baryon number computed this way is independent of the mod-

ulus U . This is rather difficult, since the pseudoscalar mode at a general point along the

baryonic branch is not explicitly known at present.

4. Euclidean D5-brane on the baryonic branch

In this section we extend the discussion of the previous section from the KS solution

to the entire baryonic branch. In particular we are interested in the dependence of the

baryon expectation value on the modulus U of the supergravity solutions. All supergravity

backgrounds dual to the baryonic branch have the same asymptotics [15] and we will see

that the leading terms (cubic, quadratic and linear in t) in the asymptotic expansion of the

action (3.8) are universal. This implies that the leading scaling dimensions of the baryon

operators do not depend on U , consistent with field theory expectations. However, the finite

term in the asymptotic expansion of the brane action does depend on U . This provides a

map from the one-parameter family of supergravity solutions labelled by U to the family

of field theory vacua with different baryon expectation values (1.2), parameterized by ζ.

4.1 Solving for the gauge field and integrating the action

Having derived the differential equation that determines the gauge field in full generality in

section 2, let us now turn to a more detailed investigation of the first order equation (2.20).

First of all we note that it can be rewritten as

d

dt

[

− 1

3
ξ3 +

(

ah2 sinh2(t)

1 + a cosh(t)
− χ

)

ξ2

+

(

e2x − h2
2 sinh2(t) − χ2 +

2ah2 sinh2(t)

1 + a cosh(t)
χ

)

ξ

]

= − h2 sinh(t)eg

v(1 + a cosh(t))
[e2x + h2

2 sinh2(t) − χ2]

+
2e2x sinh(t)

veg
[aχ − h2(1 + a cosh(t))] . (4.1)

For notational convenience we define

ξ̃ ≡ ξ + χ , (4.2)

A(t) ≡ ah2 sinh2(t)

1 + a cosh(t)
, (4.3)

B(t) ≡ e2x − h2
2 sinh2(t) , (4.4)

ρ(t) ≡
∫ t

0

[

h2 sinh(t)eg

v(1 + a cosh(t))
[e2x + h2

2 sinh2(t)]

+
2e2xh2 sinh(t)(1 + a cosh(t))

veg
− [e2x − h2

2 sinh2(t)]χ′

]

dt , (4.5)
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which allows us to write (4.1) more compactly

d

dt

[

− 1

3
ξ̃3 + A(t)ξ̃2 + B(t)ξ̃ + ρ(t)

]

= 0 . (4.6)

Thus the solutions for the shifted field ξ̃ are given by the roots of the third order polynomial

−1

3
ξ̃3 + A(t)ξ̃2 + B(t)ξ̃ + ρ(t) = C , (4.7)

where C is the integration constant.5 To fix it, we consider the small t expansion, which

is valid for any U

A ∼ t + O(t3) , (4.8)

B ∼ t2 + O(t4) , (4.9)

ρ ∼ t3 + O(t4) . (4.10)

Note that at t = 0 all coefficients in (4.7) vanish, except the first one; therefore, the

integration constant C has to be zero for this cubic to admit more than one real solution.

Then we find that ξ̃ = 0 at t = 0 for any solution on the baryonic branch.

Let us examine the cubic equation (4.7) more closely in the KS limit (U → 0) to see

how our earlier result (3.3) is recovered. In the U → 0 limit a → − 1
cosh(t) and therefore

(1 + a cosh(t)) vanishes. For small U [14, 15, 17]

(1 + a cosh(t)) = 2−5/3UZ(t) + O(U2) , (4.11)

Z(t) ≡ (t − tanh(t))

(sinh(t) cosh(t) − 1)1/3
. (4.12)

In this case A and the first term in ρ diverge as U−1. All other terms can be dropped and

we have instead of (4.6)

ξ̃2 ah2 sinh2(t)

Z(t)
+

∫ t

0
dt

h2 sinh(t)eg

vZ(t)
[e2x + h2

2 sinh(t)2] = 0 . (4.13)

After substituting the KS values for a, v, h2, x we recover (3.3).

While it would be desirable to obtain a closed form expression for the integral ρ(t) in

order to evaluate ξ explicitly, this appears to be impossible, since even in the KS case we

cannot perform the corresponding integral J(t).

Evaluating the DBI Lagrangian on-shell using (2.17) we find

e−φ
√

det(G + F) =
e−φe3x

√

1 + g2 (a2 + b2)

v|a − gb| , (4.14)

where we have taken the absolute value since the sign of a− gb will turn out to depend on

which root of equation (4.7) we pick.

5This equation is quite general; it does not assume boundary conditions η = 1 that characterize the

baryonic branch [15]. In particular this result is also valid for a brane embedded in the CVMN solution [23,

24]. This case is somewhat off the main line of this paper, but in appendix A we briefly summarize results

for the CVMN background analogous to those presented here.

– 21 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
4

For the baryonic branch backgrounds we can show that the action is a total derivative.

First note that the DBI Lagrangian (4.14) can be rewritten in the form

e−φ
√

det(G + F) =
e−φe3x

v
√

1 + g2

(ga + b)2 + (a − gb)2

|a − gb|

=

∣

∣

∣

∣

e4x(1 + a cosh(t))

vh2 sinh(t)eg
[ve−xξ′(ga + b) + (a − gb)]

∣

∣

∣

∣

, (4.15)

where the right hand side is now cubic in ξ (and its derivative) much like the differential

equation (2.17). In fact, substituting for a, b and g = g5 this equation can be integrated

in the same manner, which results in the action

S =

∣

∣

∣

∣

− 1

3
ξ̃3 + C(t)ξ̃2 + D(t)ξ̃ + σ(t)

∣

∣

∣

∣

, (4.16)

with C,D, σ defined as

C = −e2xa (1 + a cosh(t))

h2e2g
, (4.17)

D = [e2x + h2
2 sinh2(t) + 2e2x(1 + a cosh(t))2e−2g] , (4.18)

σ = −
∫ t

0

[

e2x(1 + a cosh(t))

vh2 sinh(t)eg
[e2x − h2

2 sinh2(t)] (4.19)

+[e2x + h2
2 sinh2(t) + 2e2x(1 + a cosh(t))2e−2g]χ′

]

dt . (4.20)

Again the ξ-independent term is an integral, that we denoted by σ(t). Thus we have a

fairly explicit expression for the action involving two integrals: ρ(t), which appears in the

equation for ξ̃, and σ(t).

To conclude this subsection we will demonstrate that the third solution of (4.6), which

is absent (formally divergent for all t) in the KS case (3.3), produces a badly divergent

action and is therefore unacceptable for any point on the branch. Restoring the −ξ̃3/3

term in (4.13) we see that in the GHK region U → 0 the third solution is simply

ξ = −22/33

U
(cosh(t) sinh(t) − t)1/3 + O(U) . (4.21)

The value of the Lagrangian in this case is

√

det(G + F) =
36

U3
sinh2(t) + O(U−2) . (4.22)

This expression can be used to extract the leading UV asymptotics of the Lagrangian for

any U as the UV behavior is universal for all U :

√

det(G + F) → 9

U3
e2t . (4.23)

Since the action for the third solution diverges exponentially at large t it does not seem

possible to interpret this solution as the dual of an operator in the same sense as we do for

the other two solutions.
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4.2 Baryonic condensates

We shall now study the D5-brane action (4.16) in more detail. First we develop an asymp-

totic expansion of the action (4.16) as a function of the cut-off. This expansion is useful

because the divergent terms give the scaling dimension of the baryon operator, while the

finite term encodes its expectation value.6 Then we present a perturbative treatment of

small U region followed by a numerical analysis of the whole baryonic branch. The main

result of this section will be an expression for the expectation value as a function of U

which can be evaluated numerically. This leads to an explicit relation between the field

theory modulus |ζ| and the string theory modulus U .

To calculate the baryonic condensates we need asymptotic the behavior of A,B, ρ and

C,D for large t. Notice that since for any U the solution approaches the KS solution at

large t, the terms divergent at U = 0 are UV divergent as well:

A → e2t/3

U
+ O(e−2t/3) , (4.24)

B → O(t2) , (4.25)

ρ → −e2t/3

U

(

1

4
t2 − 7

8
t +

47

32

)

+ O(1) , (4.26)

C → O(e−2t/3) , (4.27)

D →
(

1

4
t2 − t

8
+

5

32

)

+ O(e−4t/3) . (4.28)

From the expansion for A,B, ρ we find that at large t the gauge field ξ̃ grows linearly with

t and approaches the KS value with exponential precision

ξ̃(t, U) → ±
(

1

4
t2 − 7

8
t +

47

32

)1/2

+ O(e−2t/3) . (4.29)

It is crucial that the dependence on U in (4.29) is exponentially suppressed.

Since C is exponentially small and the leading term in D is U -independent we can

explicitly express the action (4.16) in terms of σ:

S±(U, t) = Sdiv(t) ± σ(U, t) + O(e−2t/3) , (4.30)

where the U -independent divergent part of the action is given by

Sdiv(t) =
1

6
(t2 + t − 2)

(

1

4
t2 − 7

8
t +

47

32

)1/2

, (4.31)

Note that
∣

∣

∣

∣

−1

3
ξ̃3 + D(t)ξ̃

∣

∣

∣

∣

= Sdiv(t) + O(e−2t/3) . (4.32)

6A systematic procedure for isolating the finite terms is holographic renormalization [39, 40]. In this

paper we limit ourselves to a more heuristic approach, which we hope can be justified through a holographic

renormalization procedure. We leave this for future work.
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The two signs stand for the two well-behaved solutions ξ(t) corresponding to the two

baryons A and B. As we argued in section 1, the I-symmetry which exchanges the A and

B baryons is equivalent to changing the sign of U . Our explicit expression (4.30) confirms

that

S+(U, t) = S−(−U, t) , (4.33)

S−(U, t) = S+(−U, t) , (4.34)

since σ(U, t) is antisymmetric in U according to the arguments presented around (1.32).

In order to find the expectation value of the baryons we evaluate the action (4.16) on these

solutions and remove the divergence by subtracting the KS value. The expectation values

hence are given by exp[− limt→∞ S0(ξ1,2)], where by S0 we denote the finite part of the

action. It is simplest to work with the product (normalized to the KS value) and ratio of

the expectation values. The former is given by

〈A〉〈B〉
〈A〉KS〈B〉KS

= lim
t→∞

exp [S+(U, t) + S−(U, t) − 2S(0, t)] , (4.35)

where we have used the fact that the two solutions coincide in the KS case, where σ = 0.

It follows from (4.35) that

〈A〉〈B〉 = 〈A〉KS〈B〉KS , (4.36)

which corresponds to the constraint AB = −Λ4M
2M in the gauge theory. The ratio of the

baryon condensates is given by

〈A〉
〈B〉 = lim

t→∞
exp [S+(U, t) − S−(U, t)] = lim

t→∞
e2σ , (4.37)

or

log〈A〉 ≃ lim
t→∞

σ(t) . (4.38)

Unfortunately we were not able to calculate σ analytically, since the U -dependent

terms of order O(tn) exp(−2t/3) in the integrand are significant. However, we can evaluate

the integral to first order in U for small U :

σ = 2−5/3U

∫ ∞

0

[

h sinh2(t)

12(sinh(t) cosh(t)−t)2/3

(

h(sinh(t) cosh(t)−t)2/3

16
− (t coth(t)−1)2

4

)

−(t coth(t)−1)(sinh(t) cosh(t)−t)2/3

sinh2(t)

(

h(sinh(t) cosh(t)−t)2/3

16
+

(t coth(t)−1)2

4

)

]

dt

≃ 3.3773U + O(U3) , (4.39)

and thus obtain the slope of the expectation values in the vicinity of KS. Even though we

lack analytical arguments that would fix the behavior of the expectation values for large

U , we can compute the integral σ(t) numerically. Our results for the expectation value as a

function of the modulus are shown in figure 1. Since 〈A〉 ∼ ζ this plot provides a mapping

from the SUGRA modulus U to the field theory modulus ζ (as we remarked before, careful

holographic renormalization is needed to check this relation).
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Figure 1: Plot of numerical results for the O(t0) term in the asymptotic expansion of the action

versus U . The slope at U = 0 matches the value calculated from (4.39). The baryon expectation

value 〈A〉 ∼ 〈B〉−1 in units of Λ2M

2M
is given by the exponential of this function.

5. Conclusions

In previous work, increasingly convincing evidence has been emerging [10, 13 – 15] that the

warped deformed conifold background of [10] is dual to the cascading gauge theory with

condensates of the baryon operators A and B. Furthermore, a one-parameter family of

more general warped deformed conifold backgrounds was constructed [17, 15] and argued

to be dual to the entire baryonic branch of the moduli space, AB = const.

In this paper we present additional, and more direct, evidence for this identification

by calculating the baryonic condensates on the string theory side of the duality. Follow-

ing [13, 18], we identify the Euclidean D5-branes wrapped over the deformed conifold, with

appropriate gauge fields turned on, with the fields dual to the baryonic operators in the

sense of gauge/string dualities. We derive the first order equations for the gauge fields and

solve them explicitly. The solutions are subjected to a number of tests. From the behavior

of the D5-brane action at large radial cut-off r we deduce the r-dependence of the baryon

operator dimensions and match it with that in the cascading gauge theory. Furthermore,

we use the D5-brane action to calculate the condensates as functions of the modulus U

that is explicit in the supergravity backgrounds. We find that the product of the A and B
condensates indeed does not depend on U .

This calculation also establishes a map between the parameterizations of the baryonic
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branch on the string theory and on the gauge theory sides of the duality. This map should

be useful for comparing other physical quantities along the baryonic branch, and we hope

to return to such comparisons in the future.
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A. D5-Brane on the CVMN background

Here we collect some results for the Euclidean D5-brane in the CVMN background [23, 24].

As emphasized in [15] and above, this background is not part of the baryonic branch since

its asymptotic behavior at large t is different from the “cascading behavior” found in [9, 10].

With h2 = χ = 0 and after substituting the explicit CVMN expressions [17, 23, 24] for the

remaining functions, the differential equation (2.20) simplifies to

ξ′ =
−t sinh(t)ξ

2
√

−1 + 2t coth(t) − t2

sinh2(t)

[

sinh(t)

4

√

−1 + 2t coth(t) − t2

sinh2(t)
− ξ2

]−1

. (A.1)

This is again a total derivative

d

dt

(

−1

3
ξ3 +

1

4
ξ sinh(t)

√

−1 + 2t coth(t) − t2

sinh2(t)

)

= 0 , (A.2)

with three solutions (for zero integration constant), ξ = 0 and

ξ = ±
√

3

2

√

sinh(t)

(

−1 + 2t coth(t) − t2

sinh2(t)

)1/4

= ±
√

3

2

√

sinh(t) eg/2 , (A.3)

where the functional form of eg for the CVMN background can be read off from the last

equality. Evaluating the Lagrangian (4.14) one finds for ξ = 0

e−φ
√

det(G + F) =
1

8
sinh(t) eg , (A.4)

and for ξ = ±
√

3 ex

e−φ
√

det(G + F) =
1

4
sinh(t)eg

(

1 + 3t2e−2g
)

. (A.5)

For all three solutions the action clearly diverges exponentially in t as t → ∞ (this cor-

responds to a power divergence in r). Therefore, the Euclidean D5-brane cannot be in-

terpreted in terms of baryonic condensates. This is in agreement with the fact that the

CVMN solution does not belong to the baryonic branch of the cascading gauge theory: its

UV asymptotics are completely different from those that define the cascading theories.

– 26 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
4

B. D7-brane on the baryonic branch

In this section we will briefly discuss the case of the D7-brane. The first order equa-

tion (2.17) with g given by (2.18) can be rewritten in a form similar to (2.20)

ξ′ =
eg

v

[

2h2a sinh2(t)(ξ + χ) − (1 + a cosh(t))
(

(ξ + χ)2 − e2x + h2
2 sinh2(t)

)

]

×

×
[

e2gh2 sinh(t)[1 − e−2x((ξ + χ)2 − h2
2 sinh(t)2)]

−2 sinh(t)(1 + a cosh(t))[a(ξ + χ) − h2(1 + a cosh(t))]

]−1

. (B.1)

Similarly to (4.1), the ξ-dependent part of this equation can be represented as a total

derivative

d

dt

[

1

3
(ξ + χ)3 +

e2xa (1 + a cosh(t))

h2e2g
(ξ + χ)2 (B.2)

−[e2x + h2
2 sinh2(t) + 2e2x(1 + a cosh(t))2e−2g](ξ + χ)

]

= −e2x(1 + a cosh(t))

vh2 sinh(t)eg
[e2x − h2

2 sinh2(t)]

−[e2x + h2
2 sinh2(t) + 2e2x(1 + a cosh(t))2e−2g]χ′ .

In analogy to (4.16) the DBI action for D7 can be represented as the sum of a polynomial

in ξ and a ξ-independent integral

SD7 = U

∣

∣

∣

∣

− 1

3
ξ̃3 +

ah2 sinh2(t)

1 + a cosh(t)
ξ̃2 +

(

e2x − h2
2 sinh2(t)

)

ξ̃ (B.3)

+

∫ t

0

[

h2 sinh(t)eg

v(1 + a cosh(t))
[e2x + h2

2 sinh2(t)]

+
2e2xh2 sinh(t)(1 + a cosh(t))

veg
− [e2x − h2

2 sinh2(t)]χ′

]

dt

∣

∣

∣

∣

.

Interestingly, the coefficients of the characteristic cubic polynomials in (B.2) and (B.3) are

the same ones we encountered for the D5-brane, except that their roles are switched: C,D

and σ appear in the differential equation for the gauge field while A,B and ρ appear in

the action.

In the KS case (B.2) simplifies drastically and reduces to (compare with (3.3))

ξ3 = 3

(

(sinh(t) cosh(t) − t)2/3h

16
+

(t coth(t) − 1)2

4

)

ξ , (B.4)

which has the trivial solution ξ = 0 and a pair of non-zero solutions related to each other

by the symmetry I. From the asymptotic expansions (4.24) of A and ρ it is then evident

that the action (B.3) will be exponentially divergent ∼ O(e2t/3) for all three solutions.
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